Genital - Female Development

From Embryology
Jump to: navigation, search

Contents

Introduction

Female uterus development

The male and female reproductive systems develop initially "indifferently", it is the product of the Y chromosome SRY gene that initially makes the "difference". The paramesonephric (Müllerian Duct) contribute the majority of female internal genital tract, while the mesonephric duct degenerates.

The mesonephric/paramesonephric duct changes are one of the first male/female differences that occur in development, while external genitaila remain indeterminate in appearance for quite a while.

There are many different issues to consider in the development of the genital system. Importantly its sex chromosome dependence, late embryonic/fetal differential development, complex morphogenic changes, long time-course, hormonal sensitivity and hormonal influences make it a system prone to many different abnormalities.


There are also currently separate pages describing Ovary Development | Oocyte Development | Uterus Development | Vagina Development | Menstrual Cycle


Genital Links: Introduction | Lecture - Medicine | Lecture - Science | Online Practical | Primordial Germ Cell | Meiosis | Female | Ovary | Oocyte | Uterus | Vagina | Male | Testis | Spermatozoa | Prostate | Genital Movies | Abnormalities | Assisted Reproductive Technology | Puberty | Category:Genital
Historic Embryology: 1912 Urinogenital Organ Development | 1921 Urogenital Development | 1921 External Genital Development | Historic Disclaimer | Puberty

Some Recent Findings

Male urogenital development (stage 22)
  • Temporal and spatial dissection of Shh signaling in genital tubercle development.[1] "Genital tubercle (GT) initiation and outgrowth involve coordinated morphogenesis of surface ectoderm, cloacal mesoderm and hindgut endoderm. GT development appears to mirror that of the limb. Although Shh is essential for the development of both appendages, its role in GT development is much less clear than in the limb. Here, by removing Shh at different stages during GT development in mice, we demonstrate a continuous requirement for Shh in GT initiation and subsequent androgen-independent GT growth."
  • Bmp7 expression and null phenotype in the urogenital system suggest a role in re-organization of the urethral epithelium. [2] "Signaling by Bone morphogenetic proteins (Bmps) has multiple and diverse roles in patterning and morphogenesis of the kidney, eye, limbs and the neural tube. ...Together, our analysis of Bmp7 expression and the null phenotype, indicates that Bmp7 may play an important role in re-organization of the epithelium during cloacal septation and morphogenesis of the genital tubercle."

Textbooks

Historic drawing of the ovary
  • Human Embryology (2nd ed.) Larson Chapter 10 p261-306
  • The Developing Human: Clinically Oriented Embryology (6th ed.) Moore and Persaud Chapter 13 p303-346
  • Before We Are Born (5th ed.) Moore and Persaud Chapter 14 p289-326
  • Essentials of Human Embryology, Larson Chapter 10 p173-205
  • Human Embryology, Fitzgerald and Fitzgerald Chapter 21-22 p134-152
  • Developmental Biology (6th ed.) Gilbert Chapter 14 Intermediate Mesoderm

Movies

Urogenital sinus 001 icon.jpg Urogenital septum 001 icon.jpg
Urogenital Sinus Urogenital Septum
Uterus 001 icon.jpg Female external 001 icon.jpg
Uterus Female External


Development Overview

Three main stages during development, mesonephric/paramesonephric duct changes are one of the first male/female differences that occur in development, while external genitaila remain indeterminate in appearance for quite a while.

  1. Differentiation of gonad (Sex determination)
  2. Differentiation of internal genital organs
  3. Differentiation of external genital organs

The 2nd and 3rd stages dependent on endocrine gonad. Reproductive development has a long maturation timecourse, begining in the embryo and finishing in puberty. (More? Puberty Development)

Gonad - Ovary

Primordial germ cell migration (mouse)

Primordial germ cell 001 icon.jpg Primordial germ cell 002 icon.jpg Primordial germ cell 003 icon.jpg
Migration 1 Migration 2 Migration 3


Links: Ovary Development | Puberty Development

Internal Genital

Historic Images of Genital Changes

Urogenital Indifferent Urogenital Female
Urogenital indifferent Urogenital female

Fetal Week 10

Planes of fetal sections
Fetal 10wk urogenital 1.jpg Fetal 10wk urogenital 2.jpg
Ovary Ovary
Fetal 10wk urogenital 3.jpg Fetal 10wk urogenital 4.jpg
Uterus Uterus


Links: Uterus Development | Vagina Development | Female Fetal Week 10

External Genital

Female external 001 icon.jpg

External Female Genital

Quicktime | Flash

References

  1. Congxing Lin, Yan Yin, G Michael Veith, Alexander V Fisher, Fanxin Long, Liang Ma Temporal and spatial dissection of Shh signaling in genital tubercle development. Development: 2009, 136(23);3959-67 PMID:19906863
  2. Xinyu Wu, Christopher Ferrara, Ellen Shapiro, Irina Grishina Bmp7 expression and null phenotype in the urogenital system suggest a role in re-organization of the urethral epithelium. Gene Expr. Patterns: 2009, 9(4);224-30 PMID:19159697


Reviews

Articles

Search PubMed

Search Pubmed: Female Genital System Development | paramesonephric duct development | paramesonephric duct

Additional Images

Terms

Glossary Links

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols


Cite this page: Hill, M.A. (2014) Embryology Genital - Female Development. Retrieved April 18, 2014, from http://embryology.med.unsw.edu.au/embryology/index.php?title=Genital_-_Female_Development

What Links Here?
Dr Mark Hill 2014, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G
Personal tools
Namespaces

Variants
Actions
Navigation
Medicine
Science
Movies-Audio
Human Embryo
Systems
Abnormal
Animals
Explore
Shortcuts
Toolbox