Zebrafish Development

From Embryology
Jump to: navigation, search

Contents

Introduction

Zebrafish-icon.png

Zebrafish or zebra danio (danio rerio) are seen as the latest "model' for embryological development studies. These embryos have the great advantage that they develop as "see through" embryos, that is, all internal development can be clearly observed from the outside in the living embryo. Much of the early modern work using this embryo model began with the papers of Kimmel.[1][2]

Several large laboratories in the US are now developing large breeding programs to carry out "knockouts" and to find spontaneous mutants of interest.


Fish Links: Zebrafish Development | Medaka Development | Salmon Development | Movie - Zebrafish Heart | Student Group Project - Zebrafish | Recent References | Category:Zebrafish | Category:Medaka

Some Recent Findings

Nipbl heart and organ patterning[3]
  • Construction of a vertebrate embryo from two opposing morphogen gradients[4] "Here, we show that opposing gradients of bone morphogenetic protein (BMP) and Nodal, two transforming growth factor family members that act as morphogens, are sufficient to induce molecular and cellular mechanisms required to organize, in vivo or in vitro, uncommitted cells of the zebrafish blastula animal pole into a well-developed embryo." BMP
  • FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution[5] "We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton." See also Online Zebrafish Atlases
  • Multifactorial Origins of Heart and Gut Defects in nipbl-Deficient Zebrafish, a Model of Cornelia de Lange Syndrome[3] "Cornelia de Lange Syndrome (CdLS) is the founding member of a class of multi-organ system birth defect syndromes termed cohesinopathies, named for the chromatin-associated protein complex cohesin, which mediates sister chromatid cohesion. Most cases of CdLS are caused by haploinsufficiency for Nipped-B-like (Nipbl), a highly conserved protein that facilitates cohesin loading. ... These findings support the view that birth defects in CdLS arise from collective effects of quantitative changes in gene expression. Interestingly, both the phenotypes and gene expression changes in nipbl morphants differed from those in mutants or morphants for genes encoding cohesin subunits, suggesting that the transcriptional functions of Nipbl cannot be ascribed simply to its role in cohesin loading. (OMIM - CDLS1 | CDLS2 | CDLS3)
  • The zebrafish transcriptome during early development[6] "The three earliest developmental stages were similar when comparing highly expressed genes, whereas the 50% epiboly stage differed from the other three stages in the identity of highly expressed genes, number of uniquely expressed genes and enrichment of GO molecular functions. Taken together, these observations indicate a major transition in gene regulation and transcriptional activity taking place between the 512-cell and 50% epiboly stages, in accordance with previous studies."
  • Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel fraser syndrome disease genes[7] " Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins."

Timeline and Stages of Embryonic Development

Duration Period Name Image
0 - 0.75 hrs Zygote Period The Zygote Period. Photo supplied by Judy Cebra-Thomas
0.75 - 2.25 hrs Cleavage Period The Cleavage Period. Photo supplied by Judy Cebra-Thomas
2.25 - 5.25 hrs Blastula Period The Blastula Period. Photo supplied by Judy Cebra-Thomas‎
5.25 - 10.33 hrs Gastrula Period The Gastrula Period. Photo supplied by Judy Cebra-Thomas
10.33 - 24 hrs Segmentation Period The Segmentation Period. Photo supplied by Judy Cebra-Thomas
24 - 48 hrs Pharyngula Period The Pharyngula Period. Photo supplied by Judy Cebra-Thomas
48-72 hrs Hatching Period The Hatching Period. Photo supplied by Judy Cebra-Thomas‎
72 hrs - 30 Days Larval Period The Larval Period. Photo supplied by Judy Cebra-Thomas‎


Skull

Zebrafish skull neural crest.jpg Zebrafish Skull Neural Crest Contribution[8]


Diagrams depict the cartilage elements and bones that are NC-derived (green), and those that show no evidence of NC contribution, and are presumably derived from mesoderm (magenta).


  • Top - shows a dorsal view of the chondrocranium from an approximately 12 dpf larva.
  • Second - side view of the bones of an adult skull, with some elements of the pectoral girdle also shown.
  • Third - a dorsal view of the dorsal aspect of the adult skull.
  • Bottom - view is of the base of the neurocranium, with the pharyngeal skeleton removed.


(text modified from figure legend)


Links: Neural Crest Development | Skull Development

Molecular

Fibroblast Growth Factor

  • Fgf8 and Fgf3 - regulating the segmentation of the pharyngeal endoderm into pouches. [9]
  • Fgf24 and Fgf8 - promotes posterior mesodermal development.[10]


  • Sox9 - required for cartilage morphogenesis.[11]

References

  1. C B Kimmel, S K Sessions, R J Kimmel Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron. J. Comp. Neurol.: 1981, 198(1);101-20 PMID:7229136
  2. C B Kimmel, D S Sepich, B Trevarrow Development of segmentation in zebrafish. Development: 1988, 104 Suppl();197-207 PMID:3077108
  3. 3.0 3.1 Akihiko Muto, Anne L Calof, Arthur D Lander, Thomas F Schilling Multifactorial Origins of Heart and Gut Defects in nipbl-Deficient Zebrafish, a Model of Cornelia de Lange Syndrome. PLoS Biol.: 2011, 9(10);e1001181 PMID:22039349
  4. Peng-Fei Xu, Nathalie Houssin, Karine F Ferri-Lagneau, Bernard Thisse, Christine Thisse Construction of a vertebrate embryo from two opposing morphogen gradients. Science: 2014, 344(6179);87-9 PMID:24700857
  5. B Frank Eames, April DeLaurier, Bonnie Ullmann, Tyler R Huycke, James T Nichols, John Dowd, Marcie McFadden, Mark M Sasaki, Charles B Kimmel FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution. BMC Dev. Biol.: 2013, 13();23 PMID:23714426
  6. Liselotte Vesterlund, Hong Jiao, Per Unneberg, Outi Hovatta, Juha Kere The zebrafish transcriptome during early development. BMC Dev. Biol.: 2011, 11(1);30 PMID:21609443
  7. Thomas J Carney, Natália Martins Feitosa, Carmen Sonntag, Krasimir Slanchev, Johannes Kluger, Daiji Kiyozumi, Jan M Gebauer, Jared Coffin Talbot, Charles B Kimmel, Kiyotoshi Sekiguchi, Raimund Wagener, Heinz Schwarz, Phillip W Ingham, Matthias Hammerschmidt Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel fraser syndrome disease genes. PLoS Genet.: 2010, 6(4);e1000907 PMID:20419147
  8. Kague E, Gallagher M, Burke S, Parsons M, Franz-Odendaal T, et al. (2012) Skeletogenic Fate of Zebrafish Cranial and Trunk Neural Crest. PLoS ONE 7(11): e47394. doi:10.1371/journal.pone.0047394 PLoS ONE
  9. Justin Gage Crump, Lisa Maves, Nathan D Lawson, Brant M Weinstein, Charles B Kimmel An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development: 2004, 131(22);5703-16 PMID:15509770
  10. Bruce W Draper, David W Stock, Charles B Kimmel Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development: 2003, 130(19);4639-54 PMID:12925590
  11. Yi-Lin Yan, Craig T Miller, Robert M Nissen, Amy Singer, Dong Liu, Anette Kirn, Bruce Draper, John Willoughby, Paul A Morcos, Adam Amsterdam, Bon-Chu Chung, Monte Westerfield, Pascal Haffter, Nancy Hopkins, Charles Kimmel, John H Postlethwait, Robert Nissen A zebrafish sox9 gene required for cartilage morphogenesis. Development: 2002, 129(21);5065-79 PMID:12397114

Journals

Zebrafish "is the only peer-reviewed journal to focus on the zebrafish, which has numerous valuable features as a model organism for the study of vertebrate development. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies, as well as research in toxicology and genomics. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage." [jour PubMed listing]

Reviews

Willy Supatto, Julien Vermot From cilia hydrodynamics to zebrafish embryonic development. Curr. Top. Dev. Biol.: 2011, 95();33-66 PMID:21501748

Lara Carvalho, Carl-Philipp Heisenberg The yolk syncytial layer in early zebrafish development. Trends Cell Biol.: 2010, 20(10);586-92 PMID:20674361

Sebastiaan A Brittijn, Suzanne J Duivesteijn, Mounia Belmamoune, Laura F M Bertens, Wilbert Bitter, Joost D de Bruijn, Danielle L Champagne, Edwin Cuppen, Gert Flik, Christina M Vandenbroucke-Grauls, Richard A J Janssen, Ilse M L de Jong, Edo Ronald de Kloet, Alexander Kros, Annemarie H Meijer, Juriaan R Metz, Astrid M van der Sar, Marcel J M Schaaf, Stefan Schulte-Merker, Herman P Spaink, Paul P Tak, Fons J Verbeek, Margriet J Vervoordeldonk, Freek J Vonk, Frans Witte, Huipin Yuan, Michael K Richardson Zebrafish development and regeneration: new tools for biomedical research. Int. J. Dev. Biol.: 2009, 53(5-6);835-50 PMID:19557689

Jeroen Bakkers, Manon C Verhoeven, Salim Abdelilah-Seyfried Shaping the zebrafish heart: from left-right axis specification to epithelial tissue morphogenesis. Dev. Biol.: 2009, 330(2);213-20 PMID:19371733

Tzu-Min Chan, William Longabaugh, Hamid Bolouri, Hua-Ling Chen, Wen-Fang Tseng, Chung-Hao Chao, Te-Hsuan Jang, Yu-I Lin, Shao-Chin Hung, Horng-Dar Wang, Chiou-Hwa Yuh Developmental gene regulatory networks in the zebrafish embryo. Biochim. Biophys. Acta: 2009, 1789(4);279-98 PMID:18992377


Articles

Search Pubmed

Search Pubmed: Zebrafish Development

Additional Images

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name.

Online Atlases


Animal Development: Axolotl | Bat | Cat | Chicken | Cow | Dog | Dolphin | Echidna | Fly | Frog | Grasshopper | Guinea Pig | Hamster | Kangaroo | Koala | Lizard | Medaka | Mouse | Pig | Platypus | Rabbit | Rat | Sea Squirt | Sea Urchin | Sheep | Worm | Zebrafish | Life Cycles | Development Timetable | K12
Historic Animals: 1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 19066 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | Embryology History | Historic Disclaimer


Glossary Links

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols


Cite this page: Hill, M.A. (2014) Embryology Zebrafish Development. Retrieved April 24, 2014, from http://embryology.med.unsw.edu.au/embryology/index.php?title=Zebrafish_Development

What Links Here?
Dr Mark Hill 2014, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G
Personal tools
Namespaces

Variants
Actions
Navigation
Medicine
Science
Movies-Audio
Human Embryo
Systems
Abnormal
Animals
Explore
Shortcuts
Toolbox