Chicken Development

From Embryology
Jump to: navigation, search

Contents

Introduction

Chicken embryo (day 12)
The chicken (taxon -Gallus gallus) embryo develops and hatches in 20 to 21 days and has been extensively used in embryology studies. Historically, the chicken embryo was one of the first embryos studied, readily available and easy to incubate, embryo development can be directly observed by cutting a small window in the egg shell. A key to this model organism study was the establishment of a staging atlas by Hamburger & Hamilton in 1951 [1], which allowed specifc developmental landmarks to be seen and correlated with experimental manipulations of development. This much cited paper included images of all key stages and was more recently republished in the journal Developmental Dynamics (1993), for a new generation of avian researchers. Probably just as important has been the recent chicken genome sequencing, providing a resource to extend our knowledge of this excellent developmental model.

Fertilized eggs can be easily maintained in humidified incubators and during early stages of development the embryo floats on to of the egg yolk that it is using for nutrition. As the embryo grows it sinks into, or below the, yolk. The regular appearance of somites allowed early experimenters to acurately stage the embryo. The embryo was accessible and easy to manipulate (limb grafts/removal etc) that were informative about developmental processes. Chicken cells and tissues (neural ganglia/fragments) are also easy to grow in tissue culture. The discovery that quail cells have a different nuclear appearance meant that transplanted cells (chick/quail chimeras) could be tracked during development. For example, LeDourian's studies showed how neural crest cells migrate widely throughout the embryo.


This collapsible and sortable table compares the chicken incubation period with other bird species.


Chicken Links: Introduction | Chicken stages | Hamburger Hamilton Stages | Witschi Stages | History of the Chick (1883) | Chicken Embryo Development Plates (1900) | Chick Early Embryology (1920) | Category:Chicken

Chicken Stages

Chicken stages - Hamburger & Hamilton staged the chicken embryo in 1951. The original paper had approx 25 citations between 1955 - 59, while in the year 1991 alone there were over 300 citations. Series of Embryonic Chicken Growth. J. Morphology, 88 49 - 92 (1951). Atlas recently republished by J.R. Sanes in Developmental Dynamics 195 229-275 (1993).


The Hamburger Hamilton Stages are most commonly used series for chicken staging. Note that there was also an earlier Witschi staging, an older 1900 Normentafeln zur Entwicklungsgeschichte der Wirbeltiere - Gallus domesticus (Normal Plates of the Development of the Chicken Embryo} by Franz Keibel and Karl Abraham, and an even older (1883) series in The Elements of Embryology by Foster, Balfour, Sedgwick, and Heape.


Normal Plates of the Development of the Chicken Embryo (1900)


Links: Chicken Stages | Hamburger Hamilton | Witschi | 1900 | 1883 | PDF Poster- Hamburger Hamilton Stages | 2006 reproduction of the original paper

Some Recent Findings

  • 4D fluorescent imaging of embryonic quail development[2] "Traditionally, our understanding of developmental biology has been based on the fixation and study of embryonic samples. Detailed microscopic scrutiny of static specimens at varying ages allowed for anatomical assessment of tissue development. The advent of confocal and two-photon excitation (2PE) microscopy enables researchers to acquire volumetric images in three dimensions (x, y, and z) plus time (t). Here, we present techniques for acquisition and analysis of three-dimensional (3D) time-lapse data. Both confocal microscopy and 2PE microscopy techniques are used. Data processing for tiled image stitching and time-lapse analysis is also discussed. The development of a transgenic Japanese quail system, as discussed here, has provided an embryonic model that is more easily accessible than mammalian models and more efficient to breed than the classic avian model, the chicken."

Gallus gallus

Taxonomy Id: 9031

Preferred common name: chicken

Rank: species

Genetic code: Translation table 1 (Standard) Mitochondrial genetic code: Translation table 2

Other names: dwarf Leghorn chickens (includes), red jungle fowl (includes), chickens (common name), Gallus domestics (misnomer), Gallus galls domesticus (misnomer)

Lineage (abbreviated ): Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae; Gallus

Chicken Movies

Mesoderm migration movie 1 icon.jpg
 ‎‎Mesoderm Move
Page | Play
Chick Heart 001-icon.jpg
 ‎‎Normal Heart
Page | Play
Chick Heart 002-icon.jpg
 ‎‎Abnormal Heart 1
Page | Play
Chick Heart 002-icon.jpg
 ‎‎Abnormal Heart 2
Page | Play
Neural crest migration Chicken Head (movies overview)
Chicken-neural-crest-migration-01.jpg
 ‎‎Neural Crest 1
Page | Play
Chicken-neural-crest-migration-02.jpg
 ‎‎Neural Crest 2
Page | Play
Chicken-neural-crest-migration-03.jpg
 ‎‎Neural Crest 3
Page | Play
Chicken-neural-crest-migration-04.jpg
 ‎‎Neural Crest 4
Page | Play
Chicken-neural-crest-migration-05.jpg
 ‎‎Neural Crest 5
Page | Play
Chicken-neural-crest-migration-06.jpg
 ‎‎Neural Crest 6
Page | Play
Chicken-neural-crest-migration-07.jpg
 ‎‎Neural Crest 7
Page | Play


Links: Movies

Other Chicken Atlases

Vertebrate and Invertebrate Embryos (7th Edition) G.C. Schoenwolf, Prentice Hall, New Jersey

An Atlas of Embryology (1975) W.H. Freeman and B. Bracegirdle, Heinemann Educational Books, UK.

This is an ATLAS (no description of development) , basically reprinted from the original 1963 edition.

Photos with labelled diagrams covering Amphioxus (worm) Frog, Chicken.

An Atlas for Staging Mammalian and Chick Embryos (1987) H. Bultler and B.H. Juurlink, CRC Press Inc., Florida

This ATLAS is not a complete series of development but has interesting comparisons of species.

Mostly photos of embryos with a few drawn diagrams and a series of staging correlation graphs.

Bird Evolution

Birds and Dinosaurs? as quoted in a Curent Biology review "...abundant and ever increasing evidence places birds as one surviving lineage of the diverse clade Dinosauria"[3][4]

Chicken Genomics

The first draft of the chicken genome was publicly released in March, 2004. There are a number of sites that have begun looking into establishing chicken genomics partly due to its powerful history as a model of vertebrate development that is easy to observe, manipulate and is also cheap. (see also NIH Proposal for Chicken Genomics | NCBI Chicken Genome Resources)

A summary of chicken genome resources has recently been identified in a review in Developmental Dynamics by Antin PB and Konieczka JH.[5]

Chicken Sex Determination

In chicken development sex determination depends on a ZZ male/ZW female mechanism.

This differs from mammalian sex determination which is based upon testis expression of an Sry gene in somatic supporting Sertoli cells.

In the gonad, the coelomic epithelium contributes only to non-steroidogenic interstitial cells and nephrogenous mesenchyme contributes both Sertoli cells and steroidogenic cells.

Genital

Chicken primordial germ cell migration model.jpg

Primordial Germ Cell Migration Model[6]

HH12–13 - yolk sac circulation courses in loop (red arrows) to enter the embryo via the heart. The majority of PGCs (green dots) localized axially at the border between the area opaca and pellucida, where the sinus terminalis converged in the anterior vitelline veins. HH14–16 - PGCs (green dots) circulated effectively towards the embryo via the sinus terminalis and the anterior vitelline veins towards the heart. Then PGCs traffic via the aorta to the caudal part of the embryo and become lodged in the genital ridges.


Chicken Heart

Note these are Hamburger Hamilton Stages of chicken development, see also Heart 3D reconstruction.

Chicken Somitogenesis

Chicken-somitogenesis.jpg

Chick somitogenesis oscillator[7]

Somitogenesis 01 icon.jpg
 ‎‎Somitogenesis
Page | Play


Chicken body elongation model.jpg

Chicken body elongation model[8]

Chicken Limb

Limb hairy2 expression model.jpg

Limb Hairy2 Expression Model[9]

Hairy2 is a "molecular oscillator" involved in both somite and limb development.


Chicken limb gene expression 03.jpg

Chicken stage 21 to 27 wing bud Tbx2 and Tbx3 expression[10]

Historic Studies

The Elements of Embryology - Volume 1 by Foster, M., Balfour, F. M., Sedgwick, A., & Heape, W. (1883)

The History of the Chick: Egg structure and incubation beginning | Summary whole incubation | First day | Second day - first half | Second day - second half | Third day | Fourth day | Fifth day | Sixth day to incubation end

Elements of Embryology - Volume 1 - Figures

References

  1. V Hamburger, H L Hamilton A series of normal stages in the development of the chick embryo. 1951. Dev. Dyn.: 1992, 195(4);231-72 PMID:1304821
  2. Christie A Canaria, Rusty Lansford 4D fluorescent imaging of embryonic quail development. Cold Spring Harb Protoc: 2011, 2011(11);1291-4 PMID:22046043
  3. Julia Clarke, Kevin Middleton Bird evolution. Curr. Biol.: 2006, 16(10);R350-4 PMID:16713939
  4. Bent E K Lindow, Gareth J Dyke Bird evolution in the Eocene: climate change in Europe and a Danish fossil fauna. Biol Rev Camb Philos Soc: 2006, 81(4);483-99 PMID:16893476
  5. Parker B Antin, Jay H Konieczka Genomic resources for chicken. Dev. Dyn.: 2005, 232(4);877-82 PMID:15739221 | Developmental Dynamics
  6. Ana De Melo Bernardo, Kaylee Sprenkels, Gabriela Rodrigues, Toshiaki Noce, Susana M Chuva De Sousa Lopes Chicken primordial germ cells use the anterior vitelline veins to enter the embryonic circulation. Biol Open: 2012, 1(11);1146-52 PMID:23213395 | PMC3507194 | Biol Open
  7. Gennady Tenin, David Wright, Zoltan Ferjentsik, Robert Bone, Michael J McGrew, Miguel Maroto The chick somitogenesis oscillator is arrested before all paraxial mesoderm is segmented into somites. BMC Dev. Biol.: 2010, 10();24 PMID:20184730
  8. Isabel Olivera-Martinez, Hidekiyo Harada, Pamela A Halley, Kate G Storey Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol.: 2012, 10(10);e1001415 PMID:23118616 | PLoS Biol.
  9. Caroline J Sheeba, Raquel P Andrade, Isabel Palmeirim Joint interpretation of AER/FGF and ZPA/SHH over time and space underlies hairy2 expression in the chick limb. Biol Open: 2012, 1(11);1102-10 PMID:23213390 | PMC3507187 | Biol Open
  10. Malcolm Fisher, Helen Downie, Monique C M Welten, Irene Delgado, Andrew Bain, Thorsten Planzer, Adrian Sherman, Helen Sang, Cheryll Tickle Comparative analysis of 3D expression patterns of transcription factor genes and digit fate maps in the developing chick wing. PLoS ONE: 2011, 6(4);e18661 PMID:21526123 | PLoS One.

Search Pubmed

Search Pubmed: chicken development

Additional Images

Animal Development: Axolotl | Bat | Cat | Chicken | Cow | Dog | Dolphin | Echidna | Fly | Frog | Grasshopper | Guinea Pig | Hamster | Kangaroo | Koala | Lizard | Medaka | Mouse | Pig | Platypus | Rabbit | Rat | Sea Squirt | Sea Urchin | Sheep | Worm | Zebrafish | Life Cycles | Development Timetable | K12
Historic Animals: 1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 19066 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | Embryology History | Historic Disclaimer


External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name.

  • Developmental Dynamics - Chicken Special Issue (2004) | Poster- Hamburger Hamilton Stages | Republished Hamburger Hamilton Stages Paper
  • Developmental Biology - Quail-Chick Chimeras
  • Nicole Le Douarin pioneered the use of quail-chick chimeras to study the developmental fate of cells in the bird embryo. The videotape Nicole Le Douarin gave us permission to digitize is titled, "Quail-Chick Chimeras in Development of the Nervous System and Immune System" and it was made in 1987. These digital video sequences and still images come from the first part of her videotape. These chimeras were a key to our understanding cell migration (eg neural crest) in the embryo.
    • Quicktime movie sequence 1 (477k) showing newly hatched quail-chick chimeras; white feathers are chick and dark, pigmented feathers are quail.
    • Quicktime movie sequence 2 (1.3 MB) Sequence showing the preparation of the chick host; removing a portion of host's neural tube and neural crest.
    • Quicktime movie sequence 3 (1.4 MB) Sequence showing the removal and "cleaning off" of donor quail neural tube and neural crest.
    • Quicktime movie sequence 4 (1.5 MB) Sequence showing transplantation and grafting of donor quail neural tube and neural crest into the chick host; at the end of this sequence, you see the host chick embryo 5 hours later with its healed in graft.
  • Developmental Biology- Laurie Iten's Serially Sectioned Frog and Chick Embryos

Glossary Links

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols


Cite this page: Hill, M.A. (2014) Embryology Chicken Development. Retrieved April 25, 2014, from http://embryology.med.unsw.edu.au/embryology/index.php?title=Chicken_Development

What Links Here?
Dr Mark Hill 2014, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G
Personal tools
Namespaces

Variants
Actions
Navigation
Medicine
Science
Movies-Audio
Human Embryo
Systems
Abnormal
Animals
Explore
Shortcuts
Toolbox