Mesoderm Development

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Gastrulation

Week 3

Ingression of epiblast cells: EMT transition Generation of definitive endoderm Generation of intra-embryonic mesoderm Oropharyngeal and cloacal membrane Embryonic ectoderm

Copyright © 2008 by Churchill Livingstone, an imprint of Elsevier, Inc. All rights reserved

http://php.med.unsw.edu.au/embryology/images/5/55/Mesoderm_001.mp4

End product gastrulation:

Trilaminar embryo

Ectoderm (Neural crest)

brain, spinal cord, eyes, *peripheral nervous system* epidermis of skin and associated structures, *melanocytes, cranial connective tissues (dermis)*

> <u>Mesoderm</u> musculo-skeletal system limbs connective tissue of skin and organs urogenital system, heart, blood cells

<u>Endoderm</u> epithelial linings of gastrointestinal and respiratory tracts

Embryonic development:

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Early Mesoderm Development

Early Mesoderm Development

- 1: notochord
- 2: paraxial mesoderm
- 3: intermediate mesoderm
- 4: lateral plate mesoderm

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Early Mesoderm Development

1: notochord

- 2: paraxial mesoderm
- 3: intermediate mesoderm
- 4: lateral plate mesoderm

1: Notochord

1: Notochord

Notochord secretes SHH to establish DV axis of Spinal Cord

1: Notochord

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Early Mesoderm Development

- 1: notochord
- 2: paraxial mesoderm
- 3: intermediate mesoderm
- 4: lateral plate mesoderm

2: Paraxial Mesoderm

Cranial: Unsegmented paraxial mesoderm: head mesenchyme

Trunk: Segmented paraxial mesoderm: somites

2: Paraxial Mesoderm Somitogenesis

Block-like bilateral condensations of the paraxial mesoderm Form every 5-6 hours in a cranial to caudal direction (day 20 to day 30) 'Segmentation clock' depends on *Hes7* transcription/translation 44 max are formed, 33 remain Somites give rise to axial skeleton and musculature, dermis of the trunk

Sli.do #N446

2: Paraxial Mesoderm Somite Development

Somites develop into:

- Sclerotome: mesenchymal cells (ribs, vertebral body and intervertebral disk)
- Dermomyotome: columnar epithelium

Dermomyotome develops into:

- Dermatome: dermis of the trunk
- Myotome: trunk musculature

2: Paraxial Mesoderm Somite Development

Nature Reviews | Genetics

2: Paraxial Mesoderm Somite patterning: DV and ML axes

Sonic hedgehog (Shh) (notochord and floor plate): ventral side somites. BMP-4: lateral side somites. Wnt family proteins (roof plate): dorsal side somites.

2: Paraxial Mesoderm

Myotome Development

Epaxial myotome: epimere: erector spinae (muscles of the deep back) Hypaxial myotome: hypomere: 3 primary muscle layers (body wall, limbs) MyoD initiates myogenesis

2: Paraxial Mesoderm Sli.do #N446 AP patterning

AP level/Hox code defines nature of Somite Derivatives

2: Paraxial Mesoderm Myotome Development

Myotomes / Voluntary Movement

Cervical	C1 C2 C3 C4 C5 C6 C7 C8	Disphragm (breathing) Disphragm (breathing), shoulder shrug Deticid (lifts arms, sideways) Bioeps (bends elbows) Wrist extensors (lifts wrist back) Triceps (straightens elbow) Hands and fingers	
Thoracic	T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12	Hands and fingers Chest muscles Chest muscles Chest muscles Chest muscles Chest and abdominal muscles Chest and abdominal muscles Chest and abdominal muscles Chest and abdominal muscles Abdominal muscles Abdominal muscles Abdominal muscles	
Lumbar	L1 L2 L3 L4 L5	Hip muscles (bends hips) Hip muscles Knee muscles (straightens knee) Knee and ankle muscles Ankle and toe muscles (lifts big toe and foot)	
Saccrum & Coccyx	\$1 \$2 \$3 \$4	Leg and toe muscles (points foot) Toes, anal and bladder sphincters Anal and bladder sphincters Anal and bladder sphincters	

2: Paraxial Mesoderm

Embryonic dermatomes will form the dermis Postnatal dermatome is a strip of skin innervated by a single spinal nerve

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Early Mesoderm Development

- 1: notochord
- 2: paraxial mesoderm
- 3: intermediate mesoderm
- 4: lateral plate mesoderm

3: Intermediate Mesoderm

Segmented and unsegmented intermediate mesoderm Gives rise to urinary system and parts of the genital system

3 nephric systems:

- Pronephros:
 - from segmented intermediate mesoderm
 - regresses
- Mesonephros:
 - embryonic kidney
 - reproductive system
 - collecting duct and tubules of the kidney
- Metanephros:
 - Adult kidney (capsule, glomeruli and nephron tubules)

3: Intermediate Mesoderm

Reproductive system develops from:

Mesonephros Mesonephric duct Paramesonephric duct Urogenital sinus Mesonephric tubules (Ureteric bud)

3: Intermediate Mesoderm

Kidney development:

Ureteric bud (of mesonephros) gives rise to ureter, pelvis, collecting duct Metanephrogenic mesenchyme gives rise to capsule, glomeruli and nephron tubules

Gonad development

Gonad Development Bipotential organs

(From: Mouse development, Ch. Sex Determination and differentiation, Swain and Lovell-Badge)

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Early Mesoderm Development

- 1: notochord
- 2: paraxial mesoderm
- 3: intermediate mesoderm
- 4: lateral plate mesoderm

4: Lateral Plate Mesoderm

Lateral plate mesoderm develops into:

- Splanchnic/visceral mesoderm
- Somatic/parietal mesoderm

Intraembryonic coelom: 3 cavities:

- Pericard
- Pleural
- Peritoneum

4: Lateral Plate Mesoderm

- Somatic/parietal mesoderm: somatopleure
- Closest to ectoderm
- Gives rise to:
 - Connective tissue and lining of the body wall
 - Bones, ligaments and dermis of the limbs
- Splanchnic/visceral mesoderm: splanchnopleure
- Closest to endoderm
- Gives rise to:
 - Cardiac mesoderm (prechordal splanchnic mesoderm)
 - Blood vessels
 - Smooth muscles of the gut

4: Lateral Plate Mesoderm

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Early Heart Development

Develops from anterior splanchnopleure Cardiogenic region Bilateral fields that fuse cranially Angioblastic cord canalization Endocardial heart tube fusion due to folding

Embryo approximately 18 Days

B Lateral view

Early Heart Development

Develops from anterior splanchnopleure Cardiogenic region Bilateral fields that fuse cranially Angioblastic cord canalization Endocardial heart tube fusion due to folding

Early Heart Development

Develops from anterior splanchnopleure Cardiogenic region Bilateral fields that fuse cranially Angioblastic cord canalization Endocardial heart tube fusion due to folding

Folding and Fusion of the Heart Tubes

UNSW Embryology

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development