Research Technologies in Developmental Biology

Chapter 5 in Larsen's *Human Embryology* (4th edition) Chapter 4 in Scott Gilbert's *Developmental Biology* (8th edition)

Research Technologies in Developmental Biology

Introduction

Animal models in Developmental biology Lineage Tracing and Transplantation Studies Gene and protein expression analysis methods Methods to study gene/protein function in embryos

Chapter 5 in Larsen's *Human Embryology* (4th edition) Chapter 4 in Scott Gilbert's *Developmental Biology* (8th edition)

Research Technologies in Developmental Biology

Introduction

Animal models in Developmental biology Lineage Tracing and Transplantation Studies Gene and protein expression analysis methods Methods to study gene/protein function in embryos

Chapter 5 in Larsen's *Human Embryology* (4th edition) Chapter 4 in Scott Gilbert's *Developmental Biology* (8th edition)

Introduction

Developmental Biology Research is driven by two questions:

1. How does development occur at tissue, cellular and molecular level?

2. How does development go wrong and result in birth defects?

Experimental questions:

How do embryonic cells/tissues develop, what do they give rise to?

Where is a gene/protein expressed during development?

What does the gene/protein do during development?

Research Technologies in Developmental Biology

Introduction

Animal models in Developmental biology

Lineage Tracing and Transplantation Studies Gene and protein expression analysis methods Methods to study gene/protein function in embryos

Chapter 5 in Larsen's *Human Embryology* (4th edition) Chapter 4 in Scott Gilbert's *Developmental Biology* (8th edition)

Animal Models in Developmental Biology Research

Why do we use animals in research?

People get sick We want to make them better

We do not want to experiment on human embryos

Animal Models in Developmental Biology Research

Animal models have a similar genetic make-up

All life on earth is related

At the very start of life, life forms were simple single cell organisms (bacteria, protozoa, algae)

These gradually evolved into more complex multicellular organisms over time

All life forms on earth share common genetic information

Animal Models in Developmental Biology Research

Animal models have a similar genetic make-up

Species that diverged more recently share more common genetic information with us compared to those whose evolution diverged longer ago.

Animal Models in Developmental Biology Research:

Early embryogenesis very similar across vertebrate species

Development diverges during fetal development

Animal Models in Developmental Biology Research:

Common animal models in Developmental Biology Research:

C. elegans and Planarians Drosophilia Xenopus leavis and Xenopus tropicalis Zebrafish Chicken Mouse

Animal Models in Developmental Biology Research:

Category:	C. elegans	Drosophila	Zebrafish	Xenopus	Chicken	Mouse	
Broodsize	250-300	80-100	100-200	500-3000+	1	5-8	
Cost per embryo	low	low	low	low	medium	high	
High-throughput multiwell-format screening	good	good	good	good	poor	poor	
Access to embryos	good	good	good	good	poor	poor	
Micro-manipulation of embryos	limited	limited	fair	good	good	poor	
Genome	known	known	known	known	known	known	
Genetics	good	good	good	fair	none	good	
Knockdowns (RNAi, morpholinos)	good	good	good	good	limited	limited	
Transgenesis CRSPR	good	good	good	good	poor	good	
Evolutionary distance to human	very distant	very distant	distant	intermediate	intermediate	close	
Color code: green, best in category; red, worst in category.							

Adapted from Wheeler & Brändli 2009 Dev Dyn 238:1287-1308.

Research Technologies in Developmental Biology

Introduction

Animal models in Developmental biology

Lineage Tracing and Transplantation Studies

Gene and protein expression analysis methods Methods to study gene/protein function in embryos

Chapter 5 in Larsen's *Human Embryology* (4th edition) Chapter 4 in Scott Gilbert's *Developmental Biology* (8th edition)

Lineage Tracing and Transplantation Studies

In **lineage tracing**, a single cell is marked in such a way that the mark is transmitted to the cell's progeny resulting in a set of labeled clones.

Lineage tracing provides information about the number of progeny of the founder cell, their location, and their differentiation status.

- Injection of visible dyes into cells/tissues (Dyl)
- Genetic labelling of cells/tissues (Rainbow)

Lineage Tracing and Transplantation Studies

Transplantation studies:

What does the node do? Transplantation of the node in gastrula Xenopus leavis embryos Induction of second body axis (Spemann and Mangold, 1924)

Induced, second neural plate Induced double body

Lineage Tracing and Transplantation Studies

Transplantation studies

What does this neural crest give rise to?

Transplantation of neural tube tissue from quail to chick embryos Investigate the donor tissue derivatives (LeDouarin et al)

Research Technologies in Developmental Biology

Introduction

Animal models in Developmental biology

Lineage Tracing and Transplantation Studies

Gene and protein expression analysis methods

Methods to study gene/protein function in embryos

Chapter 5 in Larsen's *Human Embryology* (4th edition) Chapter 4 in Scott Gilbert's *Developmental Biology* (8th edition)

Flow of genetic information

Central dogma of molecular biology

Gene and Protein Expression Analysis

Detection of **protein** expression: - Antibodies - Immunodetection

Detection of **RNA** expression:

- RTPCR
- Quantitative RT PCR
- In situ hybridization
 - RNA sequencing

Antibodies – not only for immunity!

An **antibody**, also known as an **immunoglobulin**, is a large, Y-shaped protein produced mainly by the immune system to identify and neutralize pathogens such as bacteria and viruses

We can produce antibodies binding defined antigens at large scale

Antigen

We can modify antibodies – add conjugates to Fc portion IgG

Immunodetection

1. Cell or tissue lysates

2. Tissue/embryo sections

3. Whole embryos/tissues

Quantitative Rapid Limited spatial information Limited quantitative information 2 days plus imaging Excellent spatial information Limited quantitative information Weeks plus imaging Excellent spatial information

RNA detection methods are based on nucleotide base pairing

Base Pairing in the genome DNA:DNA

Base Pairing in transcription DNA:RNA

DNA structure with base pairs: G with C and A with T

Complementary base pairing						
DNA Base	Complementary RNA Base					
G	с					
С	G					
A	U					
Т	Α					
www.sliderbase.com						

Reverse Transcription Polymerase Chain Reaction (RT-PCR)

1. RT PCR

2. Quantitative real time RT PCR

Not quantitative (Y/N answer) Rapid (2-3 hours) No spatial expression information Quantification of RNA expression levels:

- different genes within one sample
- the same gene in different samples (against a reference gene)
- against a known spiked standard Rapid

No spatial information

RNA sequencing: analyse and compare the transcriptome of thousands of genes

Gene and protein expression analysis methods *in situ* hybridization

Labeled antisense RNA probe Generate probe RNA:mRNA hybrids Detection of conjugates on probe RNA

in situ hybridization

On sections:

Radioactively labelled probe

On whole embryos/whole tissues:

Alkaline phosphatase labelled probe

Summary

Method	Detection of	Quantitative	Spatial information	Results within	
Protein gel	Protoin	Voc	No/Littlo	2 Days	
Western blot	FIOLEIII	165			
Section immunostaining	Protein	Limited	Yes	2 Days	
RT PCR	RNA	No	No/Li+tlo	1 Day	
	gene	NO	NO/LITTIE		
Real Time PCR	RNA	Vos	No/Little	1 Day	
	gene	165			
RNAseq	RNA	Voc	No/Little	Weeks	
	Transcriptome	TES	NO/LITTIE		
in situ	RNA	Limited	Voc	1.2.Wooks	
hybridization	idization Gene		ies	T-S AAGEN2	

Research Technologies in Developmental Biology

Introduction

Animal models in Developmental biology Lineage Tracing and Transplantation Studies Gene and protein expression analysis methods

Methods to study gene/protein function in embryos

Chapter 5 in Larsen's *Human Embryology* (4th edition) Chapter 4 in Scott Gilbert's *Developmental Biology* (8th edition)

Forward genetics: phenotype -> gene Reverse genetics: gene -> phenotype

Forward Genetics

Natural variation Mutation Mutatio

Sexual recombination

(Random) gene mutagenesis Caenorhabditis elegans Drosophila melanogaster Zebrafish (Mouse)

Reverse Genetics

Mutagenesis

Gene gain- or loss-of-function Caenorhabditis elegans Drosophila melanogaster Zebrafish **Mouse**

Accidental mutagenesis

Mutations that have been maintained by breeding strategies to preserve desired phenotypical features

Forward Genetics:

Induced random mutagenesis Mutagen introduced in male germ line (ENU) Breed with female

Forward Genetics:

Induced random mutagenesis Screen offspring for desired abnormalities Identify mutated gene Lengthy process (months to years depending on species)

Reverse Genetics: Transgenesis

Gain- or loss of function

Introduction of transgenic constructs into the genome of zygotes

promoter + cDNA/shRNA/Fluorescent marker

Process takes days, weeks, or months depending on species

Reverse Genetics: Knock Out Technology

Based on homologous recombination Occurs in gametes during meiosis

Inactivate gene in genome of omnipotent embryonic stem (ES) cells Transfer mutant ES cells to host blastocysts: production of chimeras ES cells give rise to all cell types in chimeras, including to gametes Breed to homozygosity

Done in mice only: process takes 1-2 years

Reverse Genetics: Knock Out Technology: excision of gene allele

Reverse Genetics: Knock Out Technology: Insertion of reporter gene into gene allele

Reverse Genetics: CRSPR/CAS9 Genome Engineering: "Find and Replace"

A specially designed synthetic guide molecule finds the target DNA strand. An enzyme cuts off the target DNA strand.

The amended DNA strand repairs itself.

Or it uses a DNA repair template (provided by researcher)

Introduction of point mutations or engineered changes (DNA repair template) Mutation of one or multiple genes In ES cells or in zygotes/embryos of many species Very quick relative to homologous recombination-based knock out technologies

Research Technologies in Developmental Biology

Introduction

Animal models in Developmental biology Lineage Tracing and Transplantation Studies Gene and protein expression analysis methods Methods to study gene/protein function in embryos

Chapter 5 in Larsen's *Human Embryology* (4th edition) Chapter 4 in Scott Gilbert's *Developmental Biology* (8th edition)