

MANIPULATING THE MOUSE EMBRYO: FROM ES CELLS TO GENOME EDITING

Fabien Delerue, PhD Senior Lecturer Dementia Research Centre, Faculty of Medicine and Health Sciences

UNSW - 16 October 2019

OVERVIEW

GEM: structure / organization & services

Manipulating the mouse genome

Genome editing

Clinically relevant models across species

TAL Effector

ORGANISATION

SERVICES

Assisted Reproductive Techniques	Genome Editing
 Superovulation IVF Reimplantation Artificial insemination Cryopreservation/rederivation Importations Ethics Aggregation chimeras 	 Pronuclear/cytoplasmic injections In vitro/in situ electroporation Gene targeting (KO, KI, Point mutations) Overexpression (random integration) Non conventional backgrounds Sequencing / Genotyping (Phenotyping)
Genome Editing a	t Macquarie (GEM)

Macquarie Researchers > External > International (and commercial)

WEBSITE

Our people	
Our services	
Contact us	
Video	

Genome Editing Macquarie (GEM)

GENOME EDITING MACQUARIE IS A SERVICE WHICH GENERATES CUSTOMISED GENETICALLY MODIFIED RODENTS FOR MEDICAL RESEARCH PURPOSES.

We use cutting edge technologies (e.g. engineered endonucleases such as ZFN and CRISPR) for genome editing, and aim at developing sophisticated animal models for the study of human diseases.

Genome Editing Macquarie

15 Research Park Drive Macquarie University NSW 2109 Email: <u>gem@mq.edu.au</u>

Contact us via our enquiry form

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

Advantages of the mouse:

- Easy to breed
- "Fast" development
- Good litter size
- Genome entirely sequenced in 2002

Mouse is the most commonly used animal model

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

ROSSANT LAB

Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos

Bin Gu^{1,3}, Eszter Posfai^{1,3} & Janet Rossant^{1,2}

nature biotechnology

FMHS | DRC | GEM

GENOME MANIPULATION IN MICE

PLOS ONE

RESEARCH ARTICLE

Superovulation Using the Combined Administration of Inhibin Antiserum and Equine Chorionic Gonadotropin Increases the Number of Ovulated Oocytes in C57BL/6 Female Mice

Prof Naomi Nakagata – CARD

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

Viral delivery

Jaenisch R. Proc. Natl. Acad. Sci. USA (1976) 73:1260-1264

Electric pulses delivered by NEPA21

Time

Voltage

Microinjection

Ittner L.M. & Gotz J. Nat Protoc. (2007) 2(5):1206-15.

Kaneko T. et al. Sci Rep. (2014) Oct 1;4:6382

FMHS | DRC | GEM

GENOME MANIPULATION IN MICE

5'			ATG		3'
↑			\rightarrow	/	^
	Enhancer	Promoter	cDNA or genomic DNA with coding exons	Poly-A	

Schematic layout of a typical **transgene** construct (Adapted from Auerbach AB. *Acta Biochem. Pol. 2004;51(1):9-31. Review)*

1980s "Era of Recombinant DNA technology"

GENOME MANIPULATION IN MICE

Vasectomy

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

Collection and Purification (hyaluronidase) of the eggs (incubator 37C – 5% CO2)

Microinjection and its applications GENOME EDITING AT MACQUARIE (GEM)

GENOME MANIPULATION IN MICE

Figure 5 | Arrangements of zygotes, holder and injection capillary on injection stage.

Setting up the injection chamber (inverted microscope)

DNA (or RNA, or protein) is injected into one pronucleus

GENOME MANIPULATION IN MICE

Establishing transgenic lines

Ittner & Goetz, *Nat. Prot. 2007* Delerue & Ittner, *Jove 2017*

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

Organisation of the zygote (= 1C embryo)

GENOME MANIPULATION IN MICE

Nucleus

Organisation of the zygote (= 1C embryo)

GENOME MANIPULATION IN MICE

Microinjection and its applications

Perivitelline (subzonal) injection of viral particles

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

Pronuclear injection of transgenes

GENOME MANIPULATION IN MICE

GENOME MANIPULATION IN MICE

Pronuclear injection of transgenes

"Position" effect

GENOME MANIPULATION IN MICE

Pronuclear injection of transgenes

"Position" effect

GENOME MANIPULATION IN MICE

Cytoplasmic injection of RNA (endonucleases)

GENOME MANIPULATION IN MICE

GENOME EDITING

MARIO'S TRANSGENIC TECHNOLOGY "Knocks Out" Nobel Prize

Mario R. Capecchi, Ph.D., of the University of Utah, has won the 2007 Nobel Prize in Physiology or Medicine. Capecchi shares the prize with Oliver Smithies of University of North Carolina, Chapel Hill and Sir Martin Evans of Cardiff University in the UK.

The prize recognizes Capecchi's pioneering work on "knockout mouse" technology, a gene-targeting technique that has revolutionized genetic and biomedical research, allowing the creation of animal models for hundreds of human diseases.

Watch a video of The University of Utah Nobel Press Conference

GENOME EDITING

GENOME EDITING

Native Gene	EXON	1 EXON 2	1
Targeting Construct	Х	NEO X	TK Plasm
	Ļ		
Homologous Recombinant			

Homologous Recombination (HR) Homologous Direct Repair (HDR)

Major drawbacks:

Natural Homologous Recombination (=HDR) is a VERY rare event (1/1.000.000th)

Germline transmission is not guaranteed

This is an ADDITIVE technology

GENOME EDITING

Engineered nucleases = Molecular scissors able to <u>precisely</u> target and cut a defined genomic sequence Tinc Finger Hunsese Target DNA Toros Tinc Finger Hunsese Tinc Finger Hunsese Tinc Finger Hunsese

1 Zinc Finger Nuclease (ZFN)

Accuracy in pinpointing the individual letters of 3 billion "base pairs" = correcting a single misspelled word in a 23-volume encyclopedia

2 Transcription activator-like effector nuclease (TALEN)

(*Nature* Method of the year 2011, *Science* Breakthrough of the year 2015)

3 CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)

GENOME EDITING

The induced double-strand break (DSB) provides two MAJOR advantages:

- Can be non-additive (KO)
- Stimulates cell-repair mechanisms: drastic increase in HDR events (1/100th). HDR frequency decreases as size of insert increases.

Sander & Joung Nat. Biotech. 2014

GENOME EDITING

Gene targeting using nucleases

To date, NO species has been reported to be resistant to CRISPR genome editing

GENOME EDITING

doxycycline

drinking water [200mg/l]

ANIMAL MODELS

Delerue F. et al. Transg. Res. (2014) Apr;23(2):225-33

their regular diet (200 mg/kg-left panels), or to the drinking

water (200 mg/l-right panels). Both delivery methods resulted in pronounced reduction of transgene expression within 2 weeks and only residual expression in hippocampal CA1 neurons (arrows) 4 weeks after treatment commenced. There was no detectable X-Gal staining after 6 weeks of doxycycline treatment, suggesting complete transgene suppression

ANIMAL MODELS

Inducible TDP-43 transgenic mouse model of FTD and ALS (*iTDP-43*^{A3157})

ANIMAL MODELS

Global brain and hippocampal atrophy in iTDP-43^{A315T} mice

9.4T MRI @ 6 months of age

9.4T MRI – 3D hippocampus segmentation @ 6 months of age

Ke Y. et al. Acta Neuropathol. 2015

FMHS | DRC | GEM

ANIMAL MODELS

EPM: TDP-43^{A3157} depletion

reverts disinhibition

MWM: TDP-43^{A3157} improves memory consolidation

Functional improvements after short-term suppression of transgene expression in iTDP-43^{A315T} mice

OF: TDP-43^{A3157} depletion reverts

hyperactivity and abnormal exploration

Rota-Rod: TDP-43^{A3157} depletion improves motor deficits

iTDP-43^{A315T} + dox

CLINICALLY RELEVANT MODELS

Multiplex CRISPR/Cas9 genome editing (using two guides)

Injection	Concentration (Cas9-G1-G2)	embryos reimplanted	Live pups (dead)	Edited (homo)
Pronuclear	5 - 5 - 5 ng/ul	152	7 (5)	2 (2★)
Cytoplasmic	100 - 50 - 50 ng/ul	122	8 (0)	8 (8)

F. Delerue - unpublished

Tyrosinase KO – Model of albinism

FMHS | DRC | GEM

CLINICALLY RELEVANT MODELS

Alzheimer / Parkinson's disease

Generation of a New Tau Knockout ($tau\Delta ex1$) Line Using CRISPR/Cas9 Genome Editing in Mice.

J Alzheimers Ďis. 2018

Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model.

Aging Cell 2017

Site-specific phosphorylation of tau inhibits amyloid- β toxicity in Alzheimer's mice.

Science 2016

Single Nucleotide Variants (SNVs) Define Senescence-Accelerated SAMP8 Mice, a Model of a Geriatric Condition.

J Alzheimers Dis. 2013

Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models.

Cell 2010

Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models.

PNAS 2010

Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease.

PLoS One 2009

ALS (= MND)

MACQUARIE University

Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS. *Acta Neuropathol. 2015*

Developmental expression of mutant PFN1 in motor neurons impacts neuronal growth and motor performance of young and adult mice. *Front. Mol. Neurosci.* 2019

Rare genetic disorders

Macrothrombocytopenia Mutations in Tropomyosin 4 underlie a novel form of human macrothrombocytopenia. *J Clin Invest. 2017*

Leukodystrophy In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. **Neurobiol Dis. 2017**

Canavan disease Uncoupling N-acetylaspartate from brain pathology: implications for Canavan disease gene therapy. *Acta Neuropathol. 2018*

CLINICALLY RELEVANT MODELS

seq_2	3241	CTCB66CCAA6CT66CCTTAA6CGC6666C6C6CCCTCACCTCA
Seq_1	20	TGGACCGCGCCGGCTCCCTCTACTGGCCCATGTCGCCCTTCCTGTCC-TGCACCACCCCC
Seq_2	3301	TGGACCGCGCCGGCTCCTCTACTGGCCCATGTCGCCCTTCCTGTCCCTGCACCACCCCC
Seq_1	79	GCGCCAGCAGCACTTTGAGTTACAACGGGACCACGTCGGC
Seq_2	3361	GCGCCAGCAGCACTTTGAGTTACAACGGGACCACGTCGGCCTACCCCAGCCACCCCATGC

c946del

CLINICALLY RELEVANT MODELS

mission and find cure for rare disease leukodystrophy

Australian Story By Kristine Taylor Updated 3 Dec 2018, 9:43pm

CLINICALLY RELEVANT MODELS ACROSS SPECIES

CLINICALLY RELEVANT MODELS ACROSS SPECIES

CLINICALLY RELEVANT MODELS ACROSS SPECIES

CLN7 (Batten): up to 45% KI (Point Mutations)

CLN7 gene - Batten disease (neuronal ceroid lipofuscinoses)

#	Group	Dvt	Sequencing		
CLN7_1	Control	Early	WT		
CLN7_2	Control	Early	WT		
CLN7_3	Control	Early	WT	Control	
CLN7_4	Control	Early	WT	CONTION	
CLN7_5	Control	Early	WT		
CLN7_6	Control	Early	WT		
CLN7_7	Control	Early	WT		
CLN7_8	Control	Expanded	WT		
CLN7_9	Guide 1	Morula	кі		
CLN7_10	Guide 1	Early	KI		
CLN7_11	Guide 1	Early			
CLN7_12	Guide I	Early	NI		
CLN7_13	Guide 1	Early			
CLN7_14	Guide 1	Early			
CLN7_16	Guide 1	Early			
CLN7 17	Guide 1	Expanded			
CLN7_18	Guide 1	Expanded	KI		
CLN7 19	Guide 1	Expanded		.	
CLN7 20	Guide 1	Expanded		Guide 1	
CLN7_21	Guide 1	Expanded			
CLN7_22	Guide 1	Expanded	KI		
CLN7_23	Guide 1	Expanded			a f
CLN7_24	Guide 1	Hatched			-
CLN7_25	Guide 1	Hatched			A DECEMBER PARTY IN THE
CLN7_26	Guide 1	Hatched	KI		a stand the stand of the stand
CLN7_27	Guide 1	Hatched			ALL THE SECOND SECOND
CLN7_28	Guide 1	Hatched			
CLN7_29	Guide 1	Early	KI		
CLN7_30	Guide 1	Expanded			and the second second
CLN7_31	Guide 1	Hatched	KI		14
CLN7_32	Guide 1	Hatched			(# C) 1/
CLN7_34	Guide 1 Guide 2	Early	KI		
CLN7_35	Guide 2	Early	NI I		13 L 114
CLN7_36	Guide 2	Early	KI		
CLN7 37	Guide 2	Hatched	КІ		
CLN7_38	Guide 2	Hatched			
CLN7_39	Guide 2	Hatched	кі		
CLN7_40	Guide 2	Hatched			
CLN7_41	Guide 2	Early	KI		
CLN7_42	Guide 2	Early			
CLN7_43	Guide 2	Early			
CLN7_44	Guide 2	Early	KI		
CLN7_45	Guide 2	Early			
CLN7_46	Guide 2	Early		• • • •	
CLN7_47	Guide 2	Early	KI	Guide 2	
CLN7_46	Guide 2	Expanded	KI.		
CLN7_49	Guide 2	Expanded	KI		
CLN7_51	Guide 2	Expanded	NI I		
CLN7 52	Guide 2	Expanded			
CLN7 53	Guide 2	Expanded			
CLN7_54	Guide 2	Expanded			
CLN7_55	Guide 2	Expanded			
CLN7_56	Guide 2	Hatched			
CLN7_57	Guide 2	Hatched	KI		
CLN7_58	Guide 2	Hatched	KI		
CLN7_59	Guide 2	Hatched	KI		
CLN7_60	Guide 2	Hatched			
CLN7_61	Guide 2	Hatched	KI		
CI N7 62	Guide 2	Morula			

FMHS | DRC | GEM

GENE THERAPY

ARTICLE

doi:10.1038/nature23305

Correction of a pathogenic gene mutation in human embryos

Hong Ma¹*, Nuria Marti-Gutierrez¹*, Sang-Wook Park²*, Jun Wu³*, Yeonmi Lee¹, Keiichiro Suzuki³, Amy Koski¹, Dongmei Ji¹, Tomonari Hayama¹, Riffat Ahmed¹, Hayley Darby¹, Crystal Van Dyken¹, Ying Li¹, Eunju Kang¹, A.-Reum Park², Daesik Kim⁴, Sang-Tae Kim², Jianhui Gong^{5,6,7,8}, Ying Gu^{5,6,7}, Xun Xu^{5,6,7}, David Battaglia^{1,9}, Sacha A. Krieg⁹, David M. Lee⁹, Diana H. Wu⁹, Don P. Wolf¹, Stephen B. Heitner¹⁰, Juan Carlos Izpisua Belmonte³§, Paula Amato^{1,9}§, Jin-Soo Kim^{2,4}§, Sanjiv Kaul¹⁰§ & Shoukhrat Mitalipov^{1,10}§

ACKNOWLEDGEMENTS

Australian Government

Prof Bernard Balleine Dr Vincent Laurent Dr Charles de Bock Dr Jonhson Liu Prof John Pimanda A/Prof Matthias Klugmann Dr Dominik Frohlick Prof Gary Housley A/Prof Pascal Carrive Prof Merlin Crossley Dr Kate Kinlan Dr Yann Gambin

CSIRO

Prof Imke Tammen A/Prof Chris Gruppen Prof Glenda Halliday Dr Nicolas Dzanko Dr Anthony Ashton

MACQUARIE University

RESEARCH

Dr Shondra Miller

Prof Charles Long

A/Prof Estelle Sontag

Prof Mark McKeage

Visit our websites

https://www.mq.edu.au/genomeediting-macquarie

www.idealgenetics.com.au

Research Assistant: No previous experience required!

fabien.delerue@mq.edu.au